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Single-site and cluster dynamical mean-field theory methods are used to estimate the response of a doped
Mott insulator to a charged impurity. The effect of correlations on the Thomas-Fermi screening properties is
determined. The charge density, the on-site and near-neighbor spin-spin correlations in the vicinity of the
impurity are compared to those far from it. The theory is used to address the question of the effect of the
density perturbation induced by the muon charge on the local response functions of a high-temperature super-
conductor. For reasonable values of the background dielectric constant and basic correlation strength, a muon
is shown to lead to an observable perturbation of the local spin dynamics, raising questions about the inter-
pretation of muon-spin-rotation experiments in metallic high-temperature superconductors.
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I. INTRODUCTION

Mobile electrons act to screen a charged impurity. Screen-
ing may be understood in terms of two equations: the Pois-
son equation which relates the electric potential V�r� to the
combination of the impurity charge density �imp�r� and the
change �n�r� in free charge density, and a constitutive equa-
tion which relates �n to V. For weakly correlated metals it
suffices to linearize the constitutive relation so the screening
properties are determined by the density-density correlation
function �. A locality approximation is typically appropriate
so that �n�r�=��r=0, �=0�V�r� and it is also reasonable to
write the Poisson equation in its continuum form. These ap-
proximations imply that screening in weakly correlated met-
als is described by the familiar Thomas-Fermi equations,
which lead to an exponential decay of the charge density
characterized by the Thomas-Fermi length �TF

=1 /�4�e2��r=0,�� /	.
Remarkably, while the ubiquity of impurity effects in cor-

related electron materials has prompted extensive theoretical
studies of the consequences of local disorder for magnetic
and superconducting properties,1 few results seem to be
available for the problem of screening of a charge center in a
material with strong electronic correlations. Several effects
appear to be important. First, and most trivially, lattice ef-
fects are strong so a discrete version of the Poisson equation
must be used. Second, most correlated materials of interest
are oxides or organics with high background polarizability.
Third, the constitutive relation between potential and density
is likely to be strongly affected by correlation phenomena,
which, in particular, will act to reduce the charge response.
Fourth, in correlated materials, properties are typically sen-
sitive functions of density, so that linearization in the mag-
nitude of the density change may not be appropriate, while
charge accumulation or depletion near an impurity may
change the physics locally, for example, nucleating or sup-
pressing local order or fluctuations.

The possibility of local changes in the physics is of par-
ticular importance in the context of muon-spin-rotation spec-
troscopy. In this class of experiments, a positively charged
muon with a known initial spin direction is injected into a

solid. Coupling to magnetic order or fluctuations causes the
spin of the muon to precess before it decays and the amount
of precession �and hence some information about the spin
fluctuations� can be inferred from the angular distribution of
the muon decay products. If the charge of the muon causes a
significant perturbation of the electronic properties near the
muon site, then the muon does not necessarily measure the
intrinsic magnetic dynamics of the material.

The question of the perturbation imposed by an injected
muon has recently arisen in the context of the possible ob-
servation of an “orbital current” phase in high-temperature
superconductors. Following a prediction of Varma,2,3

neutron-scattering experiments4–6 reported evidence of a
time-reversal symmetry-breaking phase characterized by lo-
cal magnetic fields which are nonvanishing but average to
zero over a unit cell; however, muon-spin-rotation
experiments7–9 failed to detect the magnetic fields implied by
the neutron experiments. One possible resolution of the dis-
crepancy is that the neutron measurements detect properties
of a minority phase. Another possible resolution, proposed
by Shekhter et al.,10 is that the muon, which carries unit
charge, perturbs the local physics strongly enough to destroy
the local order detected by neutrons. Reference 10 presented
a Thomas-Fermi calculation which used a continuum version
of the Poisson equation, a value 
�4 of the dielectric con-
stant rather smaller than the value 
�10–15 generally ac-
cepted for oxides and a compressibility which was assumed
to be linearizable and unrenormalized by many-body effects
�although some consequences of the correlations were men-
tioned�. The calculation of Shekhter et al. implies that the
muon would constitute a strong perturbation, dramatically
changing the doping and the magnetic dynamics. However,
the discussion given above implies that the assumptions on
which the calculation is based may be questioned.

In this paper we re-examine the issue. We use a tight-
binding model description which captures the physics asso-
ciated with the discreteness of the lattice, we examine the
dependence on background dielectric constant, and most im-
portantly we use single-site11 and cluster12 dynamical mean-
field-based methods to provide an estimate of the correlation
effects on screening and on near-impurity electronic proper-
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ties. We determine when linearization is appropriate and,
where needed, use the full nonlinear �but local� charge re-
sponse. We compute locally defined quantities which give
some insight into changes in spin correlation properties.
While our specific results are obtained for a lattice, doping,
and interaction strength appropriate to high-Tc cuprates, we
expect that our methods are more broadly applicable and our
qualitative results are relevant to a wider range of systems.

We find that if dielectric constants in the physically rea-
sonable range are used, the presence of a unit charge induces
density changes which are a non-negligible fraction of the
doping; however, the resulting changes in local magnetic
properties are found to be modest, although observable. Fur-
ther theoretical attention, perhaps using “local-density ap-
proximation plus dynamical mean-field theory �DMFT�”
methods,13 should be given to modeling the effects of charge
centers in general and muons, in particular.

II. MODEL

We approximate the conduction band degrees of freedom
as a one-band Hubbard model

H = − �
ij�

tijci�
† cj� + �

i

��̄ + Vi�ci�
† ci� + U�

i

ni↑ni↓ �1�

with hopping tij, on-site repulsion U and a spatially varying
electrochemical potential �i= �̄+Vi determined self-
consistently �see below� from the impurity charge and any
induced electronic charge. For the explicit calculations pre-
sented in this paper we take a set of planes which are elec-
tronically decoupled �no interplane hopping� but coupled via
the Coulomb interaction. Each plane is taken to be a two-
dimensional square lattice with nearest-neighbor hopping.
We consider interactions on the order of the critical value
Uc2 needed to drive a metal insulator transition in a homo-
geneous bulk system with one electron per site. �̄, the
chemical potential far from the impurity site, is chosen to
produce a carrier density n̄ corresponding to a hole doping of
�=1− n̄=0.1 corresponding approximately to the doping
level at which pseudogap and magnetic effects occur in the
high-Tc cuprates.

We suppose that the impurity is located at a position R�

and has a charge e. We consider in detail two cases, shown in
Fig. 1. In one we take the impurity to be located in the center
of a plaquette in a CuO2 plane �i.e., the �1/2,1/2,0� position�.

In the other we place the impurity symmetrically between
planes at the �1/2,1/2,1/2� position. Placing the impurity at
these high symmetry points allows us to use existing codes
but as will be seen the physics we find is generic.

We treat the screening using the self-consistent Hartree
approximation. The presence of the impurity potential
changes the electronic density on site i �coordinate R� i� from
the average value n̄ to a new value ni= n̄+�ni so the total
electrostatic potential is

Vi = −
e2

	�R� i − R� ��
+

e2

	
�
j�i

�nj

�R� i − R� j�
�2�

with 	 the background dielectric constant. The appropriate
value of 	 is not well established. Optical conductivity
measurements14 suggest that 	��→0, q=0�	4, a value
used in Ref. 10 however what is needed is 	��=0,q� for a
range of q on the order of the shortest distance from a lattice
site to the impurity position. Reasonable values of this quan-
tity have not been determined. Calculations of the “screened
U” for the related oxide material SrVO3 yield a high-
frequency unscreened U�14 eV and a low-frequency
screened quantity W	2 eV suggesting an electronic contri-
bution to 	 of 		7. Lattice relaxation effects may increase
the short scale 	 to a number of order 15 �see, e.g., Ref. 15�
but of course lattice relaxations may induce other changes in
the model. Resolving these uncertainties is beyond the scope
of the paper; we have therefore performed our explicit cal-
culations for the two values 	=4 and 15.

The remaining issue is the computation of �ni for a given
distribution of Vi; this is discussed in the next section. Here
we note that the scale of the screening effects is set by the
dimensionless parameter

 =
e2

	a

dn

d�
�3�

with a the in-plane lattice parameter. We use the value a
	3.8 Å appropriate for cuprates. The band theory estimate
for the compressibility dn /d� of weakly correlated electrons
in the cuprate band structure is dn /d�	1.4 /eV so that
nonint	5 /	. As we shall see, for correlation strengths on the
order of those believed to be relevant for high-temperature
superconductors, the actual compressibility, and therefore the
actual  are likely to be about an order of magnitude smaller.

III. METHOD

We require the solution of a correlated electron problem
in a spatially inhomogeneous, self-consistently determined
potential. There is no general and exact method for obtaining
this information. We adopt here the single-site11 and
cellular16 dynamical mean-field theory �CDMFT� approxi-
mations. These methods capture important aspects of the
strong correlation problem and, in particular, produce a Mott
transition. The single-site method is more computationally
tractable; however the cluster method includes intersite cor-
relations and may provide a more reasonable picture of the
spin dynamics.

In the single-site DMFT method, the electron self-energy
� �in general a function of two coordinates and a frequency�

FIG. 1. �Color online� Sketch of two cases considered in paper.
Left panel: charged impurity �muon� placed at center of cube of
transition-metal �Cu� sites. Right panel: impurity placed in plane.
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is taken to be site local but may be different from site to site:
��i , j ;��→�i���. The self-energy on each site i is deter-
mined from the solution of a quantum impurity model �also
different on each site�. The impurity model is specified by
the interaction Un↑n↓ and a hybridization function �i���.
The impurity model Green’s function on site i is thus

Gi
imp��� = �� + �̄ + Vi − �i��� − �i����−1. �4�

The hybridization function is fixed by a self-consistency
condition linking the Green’s function Gi

imp��� of the impu-
rity model on site i to the ii component of the lattice Green’s
function,

Gi
imp��� = Gi

lat��� 
 ���� + �̄ + Vi − �i�����ij − tij�−1�ii.

�5�

There are now two issues of self-consistency: �i must be
made self-consistent using Eqs. �4� and �5� and the potentials
Vi on all sites i must be made self-consistent with the com-
puted densities �which are obtained from the Gi

imp���� using
Eq. �2�. To reach self-consistency one begins with an initial
guess for the site densities. From this one computes the Vi
via Eq. �2�. Using these Vi and an initial guess for the hy-
bridization function one solves the DMFT equations, obtain-
ing converged solutions for Gi

imp and �i. From these we re-
compute ni and hence V and continue the cycle until
convergence is reached.

Observe that the result of this procedure is that each site
has a hybridization function determined by neighboring sites,
which have different densities. Thus a given site “knows”
that it is in a spatially inhomogeneous environment, and
therefore has properties which are different from those of a
hypothetical bulk system in which all sites have a density
equal to the density of the designated site. At various points
in the ensuing discussion we will compare properties of a
given lattice site i with density ni to those that would be
obtained in a bulk solid in which all sites had density ni.

In practice the laborious procedure described above may
be simplified. We have verified �for an example, see Fig. 4�
that to within an accuracy of �10% the change in the hy-
bridization function is negligible and the potential may be
computed from the pure-system n��� curve. Thus we use the
homogeneous bulk hybridization function to compute the
variation in local n with local � and use this to define the
density/potential self-consistency with the result that it is
necessary to solve the DMFT loop only once. The self-
consistency procedure is sketched in Fig. 2.

Figure 3 shows the change in on-site density caused by a
change in local chemical potential computed for noninteract-
ing electrons with bulk density corresponding to 0.1 hole
doping and for two dynamical mean-field cases: single-site
DMFT at U=13t �slightly larger than the single-site DMFT
critical U which is 12t for this problem� and cluster DMFT at
U=9t which is rather larger than the 6t needed to open a gap
in this approximation but is in the range believed to be rea-
sonable for cuprates.17 In the DMFT calculations the hybrid-
ization function was fixed at the form appropriate to a bulk
material with density n=0.9. As expected, the correlation
effects substantially reduce the local charge susceptibility:

the initial slope is decreased by a factor of about 5 relative to
the noninteracting value and there is a substantial curvature.
We also observe that even for �n=0.1, corresponding to a
local density of one electron per site, the charge susceptibil-
ity remains nonvanishing �as expected because the local site
is embedded in a metallic bath�, whereas the corresponding
bulk system with density n=1 per site would be in a gapped
phase with vanishing compressibility.

The single-site method is reasonably computationally
tractable, enabling the exploration of a wider parameter
space and a relatively detailed computation of physical quan-
tities. However, this approximation overestimates the critical

Poisson
(Eq. 2)

ni Vi

DMFT
ni[Vi]

{∆i(ω), Vi}{ni, ∆i(ω)}

FIG. 2. �Color online� Sketch of the self-consistency procedure
used to calculate the charge density and hybridization functions in
the vicinity of a charged impurity. Starting from an initial guess for
the potential Vi and the hybridization function �i��� the dynamical
mean-field procedure is used to obtain a new density and hybrid-
ization function; the new density is used in Eq. �2� to obtain new
potentials, and the process is iterated to self-consistency. Changes
in the hybridization function are found to be sufficiently small that
the DMFT loop may be solved once for the bulk material and
�n /�� obtained from this solution may then be used to update the
density.
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FIG. 3. �Color online� Local-density change induced by locally
potential ��i. In all cases bulk density is n=0.9. Solid line: density
change on site i, �ni, induced by potential ��i applied on same site,
computed for noninteracting electrons using tight-binding band pa-
rameters appropriate to high-temperature superconductors. Dotted
line: same computation but using single-site dynamical mean-field
theory with U=13t and hybridization parameters taken from calcu-
lation for U=13t and �=0.1. Dashed line: change in density on one
site of a four-site plaquette induced by potential �� applied to all
four sites of plaquette computed using CDMFT dynamical mean-
field theory with U=9t with hybridization function corresponding
to U=9t and �=0.1.

THEORY OF CHARGED IMPURITIES IN CORRELATED… PHYSICAL REVIEW B 81, 235124 �2010�

235124-3



interaction required to drive the Mott transition, does not
describe the “pseudogap” physics associated with under-
doped cuprates and more generally does not capture the
physics associated with short-ranged intersite correlations.
Cluster dynamical mean-field methods capture more aspects
of cuprate physics, including a lower critical value for the
Mott transition and some aspects of intersite spin correla-
tions. They also exhibit a pseudogap. However, the cluster
methods are much more computationally expensive. Further,
the widely used “dynamical cluster approximation” 12 is un-
suited to impurity problems because it requires translation
invariance. We therefore adopt the CDMFT method16 in
which one tiles the lattice into real-space clusters; each clus-
ter is regarded as a site of a new lattice of supercells. The
hopping terms connecting sites in the same supercell are part
of the cluster Hamiltonian while the hopping terms connect-
ing sites on different clusters define the supercell band struc-
ture. The new lattice is treated via single-site dynamical
mean-field theory �albeit with a more complicated impurity�,
thus the self-consistency loop is the same as in the single-site
case. We use four-site clusters. We solve the impurity model
using the continuous-time quantum Monte Carlo method in-
troduced in Ref. 18; for the four-site cluster we use the gen-
eral �matrix� representation of Ref. 19. The method gives
access both to the physical �lattice� electron Green’s function
and to correlation functions defined on the cluster model.
While the cluster correlation functions are not identical to the
corresponding lattice quantities, they are reasonable estima-
tors of the physical correlators.

One restriction should be noted: the impurity solver algo-
rithm we use19 makes heavy use of symmetries and therefore
requires that the four sites in the cluster have the same po-
tential. Thus for cluster calculations we are limited to the
case in which the impurity potential is the same for all four
sites in the cluster. The geometry we use guarantees that this
is the case for the four sites closest to the impurity on each
plane. However, for the farther plaquettes, a problem arises,
because one side of a plaquette is necessarily closer to the
impurity than the other, so the local symmetry is broken. We
treat this situation by solving the Poisson equation and then
on each cluster replacing the potential by the average of the
calculated potential over the cluster sites. The long range of
the Coulomb interaction and the relatively small changes in-
duced on farther neighbor clusters make this a reasonable
approximation.

IV. RESULTS: DENSITY DISTRIBUTION

An electrical conductor responds to a charged impurity by
producing an electron density modulation �screening cloud�
which screens the impurity charge. The panels of Fig. 4
present the spatial distribution of the screening cloud in-
duced by an impurity of charge +1 in a hole-doped super-
conductor. Shown is the charge density per lattice site along
a line passing near to the impurity site for two choices of
background dielectric constant, 	=4 and 	=15, for two
choices of impurity position �between planes or in the center
of a plaquette in one plane� and for the two approximations
we have used. We see that in all cases the density change is

only appreciable on the sites adjacent to the impurity. For
	=4 the density change on the sites nearest to the impurity is
large enough to move the local density very close to the
half-filled value. For 	=15 the density change is about a
factor of two smaller than for 	=4. The density profiles cal-
culated for single-site and four-site DMFT are very similar
because the density profile is controlled by the local com-
pressibility which is similar for the two cases we have con-
sidered. The density profiles calculated for the two impurity
locations and for the farther plane are also similar because
the 1 /r variation in the unscreened Coulomb interaction is
relatively slow. These calculations are performed using the
simplified self-consistency loop described above; also shown
are results obtained using the full DMFT procedure for the
	=15, single-site DMFT case. The density changes induced
by the impurity potential are seen to be generically on the
order of 0.05 electrons per site or less, which is less than but
on the order of the doping for underdoped high-temperature
superconductors.

V. RESULTS: SPIN CORRELATIONS

In this section we study how the screening cloud affects
the local spin dynamics. This is not straightforward because
the spin dynamics are expected to be strongly doping depen-
dent in a homogeneous bulk system while here we must treat
a spatially inhomogeneous system. We study impurity-model
correlation functions, which can be directly measured in our
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FIG. 4. �Color online� ��a�–�d�� Variation in conduction-band
density per lattice site along line �x ,0 ,0� induced by impurities
positioned at ��a� and �c�� �1/2,1/2,1/2� and ��b� and �d�� �1/2,1/2,0�
calculated as described in the text using single-site DMFT with U
=13t and four-site DMFT with U=9t. ��e� and �f�� Variation in
conduction-band density per lattice site along line �x ,0 ,1� induced
by impurity positioned at �1/2,1/2,0� for �e� 	=4 and �f� 	=15 cal-
culated as described in the text using single-site DMFT with U
=13t and four-site DMFT with U=9t.
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simulations. These are not identical to the spin correlations
of the actual lattice problem but are expected to have similar
magnitude and similar doping and temperature dependence
to those of the full lattice problem. Further, the simulation
gives results for Matsubara frequencies �n=2�nT. The n
=0 term is in essence the classical �thermal� part of the spin-
spin correlation function while the n�0 terms give some
information on the quantum fluctuations in the system. We
present results for the spin correlations on the site nearest to
the charge center and for the second neighbor, and compare
the results to those found far from the charge center and also
to those computed for a hypothetical bulk system with aver-
age density equal to that on the site nearest to the charge
center.

Figure 5 shows the impurity-model spin-correlation func-
tions computed using single-site dynamical mean-field
theory. We see that the “classical” �zero Matsubara fre-
quency� spin correlations of sites near the muon are en-
hanced relative to the value far from the muon site but are
not as large as those of a hypothetical system with average
density equal to the density on the near-muon sites. This
shows that the spin correlations on a given site are controlled
not only by the density on the site but also by the properties
of the neighboring sites. For the case 	=4 we see that the
changes are substantial �increasing the value at the lowest
Matsubara frequency by a factor of about 1.5, which in turn
is about half of the increase that would occur in a sample
whose average density was set equal to the density on the
impurity site�. On the other hand for 	=15 the changes, al-
though visible, are much smaller.

The single-site dynamical mean-field theory is known to
provide a poor approximation to the spin correlations of a
doped Mott insulator, at least in two spatial dimensions, be-
cause it neglects antiferromagnetic correlations. We have
therefore also considered the spin correlations in the four-site
CDMFT calculations. Here the difference between on-site

and first-neighbor impurity-model spin correlations reveals
the importance of antiferromagnetic fluctuations. Figure 6
shows results for the same parameters as in Fig. 5. We see
that the first-neighbor correlations increase by about 40% for
	=4 and about 25% for 	=15. We have also examined other
correlation functions, in particular, the equal-time singlet-
pair correlations which are the dominant fluctuations on the
four-site plaquette, finding that these are enhanced by similar
amounts.

VI. CONCLUSION

In this work, we have shown how “strong correlation”
effects alter the response of a material to a local charge in-
homogeneity. We introduced a general method, based on dy-
namical mean-field theory, for calculating these effects and
applied it to the question of the changes produced by the
presence of a muon in a high-temperature superconductor.
We found, in qualitative agreement with previous work,10

that the muon is not a “soft probe:” although the main cor-
relation effect is a suppression of the charge susceptibility by
a factor of 3–4 relative to band theory, the charge field asso-
ciated with the muon may produce a significant change in the
charge density on nearby sites, of order 0.05 electrons per
site. In a less strongly correlated material, the change in
charge density on the near-muon sites would be larger. A
crucial issue in determining the scale of the effects was
found to be the value of the static, short wavelength, dielec-
tric constant. The effect on the local spin correlations is
smaller than the effect on the charge density but is not neg-
ligible.

Our calculation involves several approximations. The
most important is the value of the dielectric constant, which
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is not known a priori. Varying the dielectric constant over
the range of values which have been proposed for cuprates or
other oxides leads to factor of 2 changes in our results. A
closely related issue concerns the local lattice distortions
which would normally be induced near a charged impurity
�see Ref. 15 for an example in a different context�. These
have the potential to change local hopping amplitudes and
perhaps correlation strengths, although correlation strengths,
being an atomic property, will be less strongly affected. In
view of the importance of muon-spin rotation as a probe of
correlated materials, these issues deserve further investiga-
tion, perhaps via a band-theory calculations. A second ap-
proximation is the use of the dynamical mean-field method.
The consistency of our single-site and four-site results for the
charge compressibility suggest that our basic findings for the
density correlations are a reasonable estimate of the correct
behavior. However, the calculated spin correlations are prob-
ably subject to larger uncertainties, which are at this point
not easily quantified. We know that the charge perturbation is
important only on sites immediately adjacent to the charge
center. The spin correlations on these sites, which are the
ones which would be probed by a muon, are affected both by
the on-site property �the change in local density� and by the
properties of the nearby sites, and the nearby sites in turn
both affect and are affected by the near-impurity sites. If the
intersite spin coupling is strong it is possible that the mag-
netic properties are controlled by the sites farther away from
the muon. It is very likely that the dynamical mean-field
methods we use underestimate these spin-correlation effects.
Their investigation is an important open problem.

While our specific numerical results were obtained for
model parameters appropriate to high-temperature supercon-
ductors, they have implications for the more general issue of
the response of a correlated electron material to a charged
impurity. To illustrate this point we consider a generic corre-
lated material, which we assume to be a more or less cubic
lattice. For simplicity place the charged impurity at the cen-
ter of a cube of sites. The charged impurity will induce a
screening cloud containing one electron. The length scale
over which this charge is distributed is set by the density-
density correlation function of the charged material and the
background dielectric function. If values typical of a weakly
correlated material are used and the dielectric function is on
the order of 10 or less, a simple extension of the estimates
we have presented indicates that almost the entire screening
charge sits as close to the impurity as it can get. The density
change on the near-impurity sites would then �for the simple
cubic situation we have considered� be approximately 1/6

electron per site, a change large enough to affect the local
physics. On the other hand, if strong correlation effects are
important �as in the case of high-Tc materials where they
reduce the charge response by a factor of 5 or more�, the
total charge would be spread over a wider range and the
concentration on the near-impurity sites would be substan-
tially smaller. However, the relative effect on the local phys-
ics would still not be small, as the greatest suppression of
charge response occurs for a lightly doped Mott insulator,
where the important scale is the doping, which would itself
be small. Thus even in this case we would expect that a
charged impurity would change the local physics noticeably.
A quantitative test of our theory would involve measure-
ments of the near-impurity charge-density profile and a com-
parative measurement of spin dynamics near to and far from
the impurity site.

Our results have implications for muon-spin-resonance
experiments on transition-metal oxides. Muons are an impor-
tant probe of the spin dynamical of condensed-matter phys-
ics, but a muon has a charge +1, and the results presented
here indicate that in transition-metal oxides a muon is un-
likely to be a “soft” probe; rather, it significantly perturbs the
medium in which it is embedded. Feyerherm et al.20 reached
a similar conclusion in a study of PrNi5, a rare-earth system
with more complicated physics, showing that muons signifi-
cantly perturb the crystal-field structure on the near-muon Pr
sites. In the case studied here we showed that the perturba-
tion due to the muon affects local properties such as the
near-muon-spin dynamics and presumably �although we
have not investigated this� the size of the ordered moment. It
is important to note that a dilute concentration of muons
should have only negligible effects on “global” or long-range
properties such as magnetic phase boundaries or supercon-
ducting penetration depth.
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